
NASA KSC – Internship Final Report

NASA KSC 1 11/10/2020

NASA Fall 2020 Internship, Final Report:

Modeling and Control for a Flexible Inverted

Pendulum Robot

Nashir A. Janmohamed1
Santa Monica College, Santa Monica, CA 90404, USA

Michael A. DuPuis2
NASA, Kennedy Space Center, M/S: NE-L6, FL 32899, USA

I. Abstract

This report describes the tasks accomplished during Fall 2020 at the Kennedy Space

Center under the scope of the Robotic Control System Design internship project. These tasks

primarily supported development of an augmented adaptive control system for an inverted

pendulum (IP) robotic system on a 4-wheel mobile base (Penny). This system serves as an

analogue to the control problems in the flight of rockets in the initial and latter stages of

launch, and methods developed as part of this research can later be applied to more complex

IP systems, such as launch vehicles. To more accurately model launch vehicles, a flexible

aluminum pendulum is used both on the hardware and in the simulated models. In order to

capture the flexible dynamics of the system, hardware modifications were made to Penny

(including installation of a rate gyro at the tip of the pendulum). Simulink models were

created to control and model the hardware system, and Simscape models were

created/updated to model the system in simulation. MATLAB programs were created

throughout the internship to analyze data generated from hardware and simulation runs.

Linear fixed-gain controllers have been applied to the simulated and hardware system, and

work continues with augmenting these controllers using sensor blending and direct output

adaptive control methods to improve stabilization of system states and cancel flex dynamics.

In addition to describing the work done to support these modeling efforts, an Independent

Research and Technology Development (IR&TD) proposal for a lunar simulation with soil

deformation modeling developed during the internship is briefly described.

Nomenclature

IP = Inverted Pendulum

RIP = Rigid Inverted Pendulum robot

FIP = Flexible Inverted Pendulum robot

𝑥 = cart position

𝑥̇ = cart velocity

θ = rigid pendulum angle w.r.t. vertical

θ̇ = rigid pendulum angular velocity w.r.t. vertical

θ𝑏 = flexible pendulum angle w.r.t. vertical (at base of pendulum)

θ𝑏̇ = flexible pendulum angular velocity w.r.t. vertical (at base of pendulum)

θ𝑡 = flexible pendulum angle w.r.t. vertical (at tip of pendulum)

1 NASA KSC, OSTEM Intern, NE-L6.
2 NASA KSC, PI, Robotics and Autonomous Systems, NE-L6.

NASA KSC – Internship Final Report

NASA KSC 2 11/10/2020

θ𝑡̇ = flexible pendulum angular velocity w.r.t. vertical (at tip of pendulum)

DOAC = Direct Output Adaptive Control

IR&TD = Independent Research and Technology Development

SEELO = Simulated Excavation Environment for Lunar Operations

RTMB = Research and Technology Management Board

II. Introduction

 The rigid inverted pendulum (RIP) system is a canonical

example of an unstable mechanical system that is used as a

pedagogical tool in physics, dynamics and control that has been

studied since at least the 1950s1. It is also used to model the control

problems in the flight of rockets in the initial and latter stages of

launch, when aerodynamic forces are too small for aerodynamic

stability2. Another prevalent example of a stabilized RIP is a human

being. When standing, the feet act as the pivot point; without constant

small muscular adjustments, the person will fall over1. Many control

architectures have been used to solve this control problem, ranging

from simple Bang-Bang control to more complex nonlinear control

architectures such as Sliding Mode, Model Predictive, and Fuzzy

Logic controllers1. Various reinforcement learning (RL) approaches,

including those that use neural network architectures, have also been

applied to this problem3. Less study has been given to flexible IP

systems (FIP), a variant of the RIP system with a much higher degree

of nonlinearity that more accurately models the dynamics of rockets4,

though there are examples in the literature of controllers developed for

this problem5.

This research builds upon the work done by a previous intern to develop a MATLAB-based Simscape model to

control a FIP system on a wheeled mobile base (Penny) and theoretical modeling by Dupuis and Okasha6. These

models describe the dynamics of the system, but it is desired to enhance model fidelity and efficacy through other

approaches; the existing theoretical and empirical models of the system are not yet accurate enough to transfer

simulated controllers onto the hardware and have them provide sufficient stabilization.

Before implementing new control laws and architectures, with a focus on direct output adaptive control (DOAC)

methods, it is necessary to effect hardware upgrades to Penny. Currently, measurements are taken of the cart

position (𝑥) and pendulum angular velocity with respect to the vertical (θ̇). Given the time history of all prior

measurements, cart velocity (𝑥̇) and pendulum angle (θ) can be computed. These four states are sufficient to predict

the future behavior of a RIP system, but they do not capture the overall state of a FIP system and thus cannot predict

future behavior. Since the angle of the pendulum is measured only at the base, if there is flex in the pendulum, a

state measurement (comprised of [𝑥, 𝑥̇, θ, θ̇]) can correspond to different pendulum states (i.e. many with flex and

one without). Even if two system states may have the same four state measurements, they will evolve differently

through time, which motivates measuring additional information to estimate pendulum flex. The flex can be

implicitly estimated by measuring the angular velocity of the pendulum tip with respect to the vertical and

comparing this to the angle at the base of the pendulum. To this end, a rate gyro assembly was installed on the

pendulum tip. The Simulink models were updated concurrently to incorporate a pseudo sensor that reports angle and

angular velocity of the pendulum tip with respect to the vertical (yielding a state measurement with six states

[𝑥, 𝑥̇, 𝜃𝑏 , 𝜃𝑏̇ , 𝜃𝑡 , 𝜃𝑡̇]).

For the purposes of exclusively investigating cancellation of flex modes in the inverted pendulum system, a

modification to the system was made that employed an extremely flexible aluminum pendulum with a fixed base

(i.e. θ𝑏 = θ𝑏̇ = 0). With a tip gyro on this flexible pendulum, all measured 𝜃𝑡 states correspond directly to flex. This

variant on the inverted pendulum system was used to research control methods that act directly on the flex.

To capture the flexible dynamics of the system, hardware modifications were made to Penny (including

installation of a rate gyro at the tip of the pendulum). Simulink models were created to control and model the

hardware system, and Simscape models were created/updated to model the system in simulation. MATLAB

programs were created throughout the internship to analyze data generated from hardware and simulation runs.

Linear fixed-gain controllers have been applied to the simulated and hardware system, and work continues with

augmenting these controllers using sensor blending and direct output adaptive control methods to improve

Figure 1. Depiction of a FIP system.

Pendulum flex causes different angle to be

measured at the pivot point (𝜽𝒃) and at the

free rotating end of the pendulum (𝜽𝒕).

NASA KSC – Internship Final Report

NASA KSC 3 11/10/2020

stabilization of system states and cancel flex dynamics. In addition to describing the work done to support these

modeling efforts, an Independent Research and Technology Development (IR&TD) proposal for a lunar simulation

with soil deformation modeling developed during the internship is briefly described.

III. Hardware Modifications

Before implementing the sensor upgrades and installing a flat fixed

base pendulum, a wiring spreadsheet of Penny (which consists of two

Arduino Mega 2560’s, electronic speed controls, a serial conversion

circuit, motor encoders, a MicroStrain IMU, 5V regulators, servos, and

XBees for wireless communication between the master Arduino and

the tip rate gyro assembly) was made to facilitate ease of modification

to the electrical system at a later date. Voltage monitors were also

installed on the chassis and on the tip gyro assembly. Since the battery

voltages were unknown without removing them and checking their

voltage with a multimeter, occasional performance anomalies due to

exiting the nominal voltage range (as shown in Figure 2) were harder

to diagnose while the robot was being operated.

The new flat pendulum used to study flex modes exclusively

required a different mount from the one previously on Penny for two reasons: 1) the different pendulum geometry

(original rectangular: 0.25in.2 cross section; new flat: 0.0945in×1.995in) and 2) the desire to fix one end of the

pendulum. After a design was created by fellow intern Alex Lacerna, the part was printed, fastening holes were

drilled, and it was affixed to the chassis assembly (as shown in Figure 3). The flat pendulum also had holes drilled

on both ends to allow fixing to the base mount and to the rate gyro assembly to the tip of the pendulum.

Summer 2020 intern, Juan Halleran, began work on creating a tip rate gyro assembly (Figure 4) built around a

Pro Micro 3.3V microcontroller, an XBee radio communication module, and an MPU6050. The assembly was

completed in the early stages of the internship. A wiring diagram of the tip rate gyro assembly is shown in Figure 5.

The various boards were initially soldered directly together, but the wiring was redone to improve cable

management by installing Molex connectors. In addition to improving the mechanical stability of the assembly,

these connectors make the system more modular, which will reduce time and effort spent fixing the assembly if any

constituent element fails.

Figure 3. Penny chassis.

The flat fixed pendulum is

seen installed; both the

original (black)

pendulum holder and the

new (grey) one are

visible.

Figure 4. Penny tip rate

gyro assembly. The voltage

monitor, 9V battery, and

Pro Micro are shown; the

XBee and MPU6050 are on

the other side of the

assembly.

Figure 2. Ni-MH Discharge Curve7.

Battery voltage drops precipitously after

leaving range of nominal capacity.

Figure 5. Penny wiring diagram.

NASA KSC – Internship Final Report

NASA KSC 4 11/10/2020

IV. Robot Code

A. Arduino/Simulink wireless communication

Penny has master control code loaded onto one of the Arduino Mega 2560s, and this Arduino receives serial

inputs from another Arduino Mega 2560, and software serial (over radio) inputs from the Pro Micro (which reports

angular velocity of the tip of the pendulum, i.e. θ𝑡). Juan Halleran previously used XCTU to set up wireless

communication between the Pro Micro and the master Arduino, but there was a limitation in the data that could be

sent, with the largest discrete unit of information that could be sent being a single byte. After reading the gyro data

from the MPU6050 using code from the i2cdevlib/Arduino/MPU6050 library8, the measured floating-point value on

the Arduino side was converted to an array of bytes as specified by the IEEE Standard for Floating-Point Arithmetic

(IEEE 754)9 each of which was sent in succession. With a continuous sequence of bytes and no demarcation

between packets, it is not possible to reconstruct the data without ambiguity. To eliminate this ambiguity on the

receiver side, a header byte (0xFF) was prepended to the sequence, and a checksum byte (the XOR of the four bytes

that comprised the original floating-point measurement) was appended to the sequence. On the Simulink side, the

bytes were received and after aligning with the header and verifying the checksum, the floating-point value was

reconstructed. See Appendix A for the code on both the Arduino and Simulink side, as well as the Simulink model

to reconstruct the measured float data.

The precision of the Arduino measurement can be specified in the setup code on the Arduino side; the four

options for 𝑑𝑝𝑠 (the precision/range of the measurement) are ±250°/s, ±500°/s, ±1000°/s, and ±2000°/s.

Regardless of the value selected for 𝑑𝑝𝑠, the measurements reported by the MPU6050 code were mapped to the

range of [-1431,1430]. Since it was clear that increasing the limit of measurable values decreased the precision of

the measurement, the smallest range that fully measured the spectrum of pendulum angular velocities (in non-

extreme operations) would be the most optimal. Through empirical testing, the smallest range that measured the full

spectrum of pendulum angular velocity was determined to be 1000°/s. On the Simulink side, the reported value was

converted to a measurement in degrees using the relationship

𝑟𝑒𝑠 = 𝑖𝑛𝑝 ⋅
2𝑑𝑝𝑠

𝑛𝑏𝑖𝑛𝑠
, where 𝑖𝑛𝑝 is the value reported by the sensor,

𝑑𝑝𝑠 is as defined above, and 𝑛𝑏𝑖𝑛𝑠 = 2862 is the fixed range of

values reported by the sensor.

One last issue with the reported angular velocity that was

addressed was the sensor bias in the gyro measurement (i.e. it

alternates between 0 and a fixed negative value, which depends on

the sensitivity used for 𝑑𝑝𝑠, randomly as shown in Figure 6).

Only velocity is measured, so angle is obtained by integrating the

angular velocity measurement with respect to time. When the

sensor is at rest, this bias is most noticeable, and shows up in the

angle measurement as a relatively linear walk away from zero. A naïve method of cancelling this drift was employed

to reduce the error in the position measurement: the slope of this drift (
𝑑θ

𝑑𝑡
) was measured and subtracted from the

rate measurement. This reduced the error to more of a random walk than a linear drift away from zero (see Figure 7).

To verify that the angle reported was not drifting from zero, the sensor was flipped between 90°, and the

performance was much better (see Figure 8).

Figure 7. Angle at rest a) before and b) after correcting for rate bias. With the sensor at rest, the error in the

measurement goes from linear w.r.t. time, to constant small error. In a), after 25 seconds, the 𝛉 measurement is -

10°, while in b), after 40s, the error is only ±𝟏°.

Figure 6. Gyro bias. Measurement alternates

randomly between -0.7 and 0.

NASA KSC – Internship Final Report

NASA KSC 5 11/10/2020

B. Motor signal builder

Penny’s motors are controlled on the Simulink side

by using the “Standard Servo Write” block. According

to the Arduino documentation10, this block writes a

voltage value to the continuous rotation servo, which in

effect specifies a speed: “0 being full-speed in one

direction, 180 being full speed in the other, and a value

near 90 being no movement”. However, deadband (a

band of input values where the output is zero) exists in

the range around 90 (~[86,95]). Also, past certain

values on the lower and upper end of the range (e.g.

ctrl < 𝑙𝑙𝑖𝑚 and ctrl > 𝑢𝑙𝑖𝑚), the signal drops out. For

these reasons, in addition to the desire to use a

command signal of the form 𝑐𝑚𝑑 ∈ [−σ, σ], a motor

signal builder was created.

The motor signal builder takes 𝑐𝑚𝑑 values in the range of [−𝜎, 𝜎] (for Penny, σ = 79) and outputs a 𝑐𝑡𝑟𝑙 value

in the range of [𝑙𝑙𝑖𝑚, 𝑢𝑙𝑖𝑚] (for Penny, 𝑙𝑙𝑖𝑚 = 6 and 𝑢𝑙𝑖𝑚 = 179). If 𝑐𝑚𝑑 ≥ σ, then 𝑐𝑡𝑟𝑙 = 𝑢𝑙𝑖𝑚; if 𝑐𝑚𝑑 ≤ −𝜎,

then 𝑐𝑡𝑟𝑙 = 𝑙𝑙𝑖𝑚. If 𝑐𝑚𝑑 = 0, then 𝑐𝑡𝑟𝑙 = 90 (i.e. in the deadband which produces no movement). Otherwise, the

𝑐𝑡𝑟𝑙 signal is constructed using two piecewise functions, one for each side of the deadband. If −σ ≤ 𝑐𝑚𝑑 < 0, then

𝑐𝑡𝑟𝑙 = 𝑓1(𝑐𝑚𝑑), else if 0 < 𝑐𝑚𝑑 ≤ σ, then 𝑐𝑡𝑟𝑙 = 𝑓2(𝑐𝑚𝑑). Two terms 𝑓𝑏𝑖𝑎𝑠 and 𝑏𝑏𝑖𝑎𝑠 are used to change the

slope of the linear functions 𝑓1 and 𝑓2 that map 𝑐𝑚𝑑 → 𝑐𝑡𝑟𝑙 as shown below.

𝑓1(𝑐𝑚𝑑) = (𝑙𝑑𝑏 + 𝑐𝑚𝑑) ∗ (1 − 𝑏𝑏𝑖𝑎𝑠)

𝑓2(𝑐𝑚𝑑) = (𝑢𝑑𝑏 + 𝑐𝑚𝑑) ∗ (1 + 𝑓𝑏𝑖𝑎𝑠)

After creating the 𝑐𝑡𝑟𝑙 signal from the input 𝑐𝑚𝑑, it was clear that there were still inconsistencies between the

right and left sides of the robot (e.g. one side had a different deadband). Since the left and right sides of the robot are

not mechanically linked, each might need slightly different parameters, and so two motor signal builder functions

are used, one for each side of the robot.

C. Deadband identification

Since the deadband on Penny will occasionally shift, it was desired to automate the process of identifying the

deadband. This was accomplished by creating a Simulink model to, given a known starting deadband value 𝑑𝑏 (such

as 90), send a 𝑐𝑡𝑟𝑙 value of 𝑑𝑏 ± 1 (+ if identifying upper deadband, − if identifying lower deadband) and

increment/decrement the value of 𝑑𝑏 until the motor encoders start reporting motion. The first value of 𝑑𝑏 to

produce motion on each side of the robot is then reported to the user using a “Display” block. One consideration

made was that small differences in encoder values would falsely trigger the condition indicating that the deadband

had been identified; a 𝑚𝑖𝑛_𝑑𝑒𝑙𝑡𝑎 value was then created, and if 𝑎𝑏𝑠(𝑒𝑛𝑐𝑜𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑣_𝑒𝑛𝑐𝑜𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒) >
𝑚𝑖𝑛_𝑑𝑒𝑙𝑡𝑎, then the simulation would report the identified deadband.

Figure 8. Angle obtained from integrating angular

velocity, with sensor positioned at 0° and 90°. After

correcting for drift, the reported position is highly

accurate.

Figure 9. Piecewise functions that make up motor

signal builder.

Figure 10. Tuned motor signal builder. Yellow: cmd,

purple & green: ctrl, red & blue: motor encoder readings.

NASA KSC – Internship Final Report

NASA KSC 6 11/10/2020

D. Master control model w/ data collection and script for saving data to workspace

After developing the models to construct the

motor signal and read the data from the tip rate gyro

assembly, a master control model was created that

combined the two. To efficiently save the data

generated during hardware tests, “To Workspace”

blocks were added to the model to save the generated

data [𝑒𝑛𝑐𝑙 , 𝑒𝑛𝑐𝑟 , θt, θṫ, 𝑐𝑚𝑑, 𝑡], and a script was

created to save the generated data from the workspace

to a .mat file (e.g. u_sin_w_3_a_5_10_2_2020.mat,

with parameters 𝑢 -> input function specifying cmd,

𝑤 -> frequency, 𝑎 -> amplitude). An example plot of

data generated during a hardware test is shown in

Figure 11.

V. Modeling & analysis

A. Simscape models

A Simscape model of the original Penny system with a swiveling pendulum was previously created (Summer

2019) by intern Juan Halleran. This Simscape model was itself a modification of an inverted pendulum model

created by Mathworks, which can be loaded from within MATLAB by typing the command

𝑙𝑜𝑎𝑑(′𝑟𝑐𝑡_𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚′);. Halleran’s modifications included replacing the pendulum block with a general flexible

beam and changing the expected input to the plant from force to voltage. Instead of applying force directly to the

cart, the input voltage is applied to a “DC Motor” block which produces rotation of a friction parameterized tire; the

force generated from the tire interaction with the ground is then applied to the base of the cart. Using this model as a

baseline, a) a new Simscape model was created that is more representative of the swiveling Penny system, and b) a

new Simscape model was created to represent the fixed base flat pendulum system.

To represent the fixed pendulum base system, the

pendulum geometry was updated to reflect the new

length and cross section, limits were set on the

revolute joint such that the pendulum was fixed at the

base, and a pseudo tip sensor (using the “Transform

Sensor” block) and small mass were added to the

pendulum tip to reflect the addition of the tip rate gyro

assembly to the hardware system. The mass of the tip

weight was tuned such that the natural frequency of

the pendulum (the frequency at which a system tends

to oscillate in the absence of any driving or damping

force) matched that of the physical pendulum on

Penny. The natural frequency for both the hardware

and simulated systems were identified by sending a

sinusoidal input at some frequency 𝜔 and noting the

value ω𝑛 (i.e. the natural frequency) that created the

largest resonance.

In both systems, a motor signal builder was made to reflect the nonlinearity of the hardware and to allow input

𝑐𝑚𝑑 signals in the same form as those that would be used on the real Penny system. This motor signal builder takes

input cmd signals and outputs ctrl signals in the range of [−𝜎, 𝜎] (where 𝜎 is the value used in the hardware, in this

case, 79). After converting the 𝑐𝑚𝑑 to a 𝑐𝑡𝑟𝑙 signal, the 𝑐𝑡𝑟𝑙 signal is converted to a voltage using a relationship

between 𝑐𝑚𝑑 and 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 on the hardware (𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 0.1431𝑐𝑡𝑟𝑙) that was empirically determined by Dupuis.

This motor signal builder allows for developing controllers in simulation that will be more easily transferrable to the

hardware system.

Figure 12. Test to determine natural frequency on

hardware. Left peak: 𝛚 = 𝟐. 𝟗𝟓 Hz, Middle peak: 𝛚 =
𝟑. 𝟎𝟎 Hz, Right peak: 𝛚 = 𝟑. 𝟎𝟓 Hz. The value 𝛚𝐧 was

determined through this process to be 𝟑. 𝟎𝟎 Hz. A similar

process was used to tune the natural frequency in

simulation.

Figure 11. Raw states recorded and plotted from within

MATLAB. States generated from 𝒖(𝒕) = 𝟓 𝒔𝒊𝒏(𝟑 ∗ 𝟐𝛑𝒕).

NASA KSC – Internship Final Report

NASA KSC 7 11/10/2020

B. Identifying transfer functions from data

In addition to developing a representative Simscape model that reflects the nonlinearities present in the hardware

system, it was desired to develop linear models of the Penny system that could then be used in developing linear

quadratic regulator (LQR) control methods, as well as DOAC augmentations to these linear controllers. To this end,

a system for taking recorded input-output relationship data (e.g. 𝑐𝑚𝑑, 𝑥, 𝜃, 𝑡) from both the hardware system and

Simscape models and producing transfer functions (a mathematical function which theoretically models the device's

output for each possible input) was developed. Using the 𝑡𝑓𝑒𝑠𝑡 method provided by MATLAB, transfer functions

were produced that described the input 𝑐𝑚𝑑 relationship to each of the four output states for the fixed flexible IP

system ([𝑥, 𝑥̇, 𝜃, 𝜃̇]). These transfer functions were then used to construct a state space model of the system. At the

time of this publication, work is just beginning with control implementation. However, these linear state space

models describe the system well, and LQR controllers developed from these models perform relatively well tracking

reference signals (i.e. demanded θ = 1°) on the Simscape system.

VI. Miscellaneous Work

A. IR&TD development: Simulated Excavation Environment for Lunar Operations (SEELO)

As an enrichment activity, a proposal for a research project was created as a submission to the Independent

Research & Technology Development (IR&TD) proposal call. IR&TD is an internal Kennedy Space Center (KSC)

program that funds research efforts proposed by NASA PIs (principal investigators). The proposed project entails

developing an interactive simulation environment that efficiently models lunar In-Situ Resource Utilization (ISRU)

excavation operations, including soil deformation, while running in faster-than-real-time. There is a need for a

simulation environment with accurate regolith interaction mechanics that is less computationally expensive than

commercially available multiphysics tools. This simulation will allow the development of robust machine learned

models and policies to improve and enable certain ISRU operations. It would also

enable various projects and capabilities such as validation of excavation

mechanisms and testing/validation of mission architectures or robotic systems for

ISRU. For ISRU missions currently in the planning stages, leveraging the data

generated by this simulation in a wide variety of mission architectures will

significantly improve the fidelity of planning efforts. The skills required to

develop this simulation, both for ISRU concept testing and machine learning to

enable autonomy, are valuable and transferable to other dynamical systems and

environments at KSC.

SEELO was selected as one of eight projects for presentation to the NASA

KSC Research and Technology Management Board (RTMB) and was approved

by the board. It is in the final stages of approval for funding in FY21, pending

authorization by Burt Summerfield, the Associate Director of Management at KSC.

VII. Conclusion

The hardware modifications and software developed that were described in this report provide a baseline for

further work in application of controllers to both the hardware and simulated Penny system. Given the parallels

between Penny and launch vehicles, control methods developed for this system can have significant impact on the

state of the art in control methods for launch vehicles. Future work (which is ongoing at the time of this publication)

includes implementation of sensor blending and DOAC methods, use of a zero dynamics estimator11, and use of

disturbance accommodating DOAC12, which is the main focus of Michael Dupuis’ research.

Figure 13. Lunar sim concept

developed for presentation to

the RTMB.

NASA KSC – Internship Final Report

NASA KSC 8 11/10/2020

Appendix

A. Arduino/Simulink wireless communication

Arduino Code to construct array of bytes from float

typedef union
{
 float number;
 uint8_t bytes[4];
} FLOATUNION_t;
FLOATUNION_t myFloat;

void sendFloatAsBytes(float val) {
 myFloat.number = val;
 XBee.write(0xff);
 byte b = 0;
 delay(5);
 for (int i = 0; i < 4; i++)
 {
 XBee.write(myFloat.bytes[i]);
 b ^= myFloat.bytes[i];
 delay(5);
 }
 XBee.write(b);
 delay(5);
}

Figure 6. Simulink Model for reading 𝜽𝒕 states from tip sensor. Array of bytes is sent over software serial to

Port 2, deconstructed to float in “decode_bytes_to_float” block, rate bias is corrected in “scale_dps” block, and

then angle is obtained from integrating the measured angular velocity, 𝜽𝒕
̇ .

NASA KSC – Internship Final Report

NASA KSC 9 11/10/2020

MATLAB Code to decode array of bytes to float
function out = decodeBytesToFloat(u, status)
% u should be length 6, 1 startbit, 4 data, 1 checksum
% if check fails or bitxor fails, return previous value

persistent receiveBuffer;
persistent counter;
persistent prevOut;

if isempty(counter)
 counter = 1; %Initialize counter
end

if isempty(receiveBuffer)
 %Initialize receive buffer
 receiveBuffer = uint8([0 0 0 0 0 0]);

end

if isempty(prevOut)

 % Initialize temp variable to hold previous output
 prevOut = single(0);
end

if status == 0
 out = prevOut;
 return
end

%Store received byte to buffer
receiveBuffer(counter) = u;

if counter == 6 % Data received.
 b = uint8(0);
 for idx = 2:5
 b = bitxor(b, receiveBuffer(idx));
 end

 if b == receiveBuffer(6)
 A = uint8(receiveBuffer(2:5));
 out = typecast(A, 'single');
 prevOut = out;
 else
 out = prevOut;
 end

 counter = 1;
else %Still receiving data
 counter = counter+1;
 out = prevOut;
end

if receiveBuffer(1) ~= 255 %Header mismatch

 %Synchronize header incase of mismatch
 counter = 1;
end

NASA KSC – Internship Final Report

NASA KSC 10 11/10/2020

Acknowledgments

Nashir thanks the NASA KSC education office, the Minority University Research and Education Project

(MUREP), and Universities Space Research Association (USRA) for the opportunity to be a part of the exciting

work being done at KSC. In addition, he thanks both the NE-L6 branch and the Granular Mechanics and Regolith

Operations (GMRO) laboratory for hosting him as an intern, as well as Michael DuPuis for his mentorship.

References
1O. Boubaker, “The inverted pendulum: A fundamental benchmark in control theory and robotics,” International Conference

on Education and e-Learning Innovations, Sousse, 2012, pp. 1-6, doi: 10.1109/ICEELI.2012.6360606.
2Lundberg, Kent. (2009). History of Inverted-Pendulum Systems. IFAC Proceedings Volumes. 42. 131-135.

10.3182/20091021-3-JP-2009.00025.
3A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that can solve difficult learning control

problems,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13, pp. 834–846, Sept./Oct. 1983.
4Dupuis, M. NASA, KSC Dynamics and Controls SME.
5J. Tang and G. Ren, "Modeling and simulation of a flexible inverted pendulum system," in Tsinghua Science and

Technology, vol. 14, no. S2, pp. 22-26, Dec. 2009, doi: 10.1016/S1007-0214(10)70025-0.
6Dupuis, M., Okasha, H., “Flexible Dynamics Modeling for Penny Robot,” NASA Scientific and Technical Information

Program (unpublished).
7Mebarki, Brahim & Belkacem, Draoui & Rahmani, Lakhdar & Allaoua, Boumediene. (2013). Electric Automobile Ni-MH

Battery Investigation in Diverse Situations. Energy Procedia. 36. 130-141. 10.1016/j.egypro.2013.07.016.
8Rowberg, J., “i2cdevlib: I2C device library collection for AVR/Arduino or other C++-based MCUs”

https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
9"IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-2019 (Revision of IEEE 754-2008) , vol., no., pp.1-84, 22

July 2019, doi: 10.1109/IEEESTD.2019.8766229.
10Various, n.d. Arduino - Servowrite. [online] Arduino.cc. Available at: <https://www.arduino.cc/en/Reference/ServoWrite>.
11M. J. Balas and S. A. Frost, "Direct Adaptive Control of Non-Minimum Phase Linear Infinite-Dimensional Systems in

Hilbert Space Using a Zero Dynamics Estimator," 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France,

2019, pp. 3072-3079, doi: 10.1109/CDC40024.2019.9029835.
12R. J. Fuentes and M. J. Balas, "Direct adaptive disturbance accommodation," Proceedings of the 39th IEEE Conference on

Decision and Control (Cat. No.00CH37187), Sydney, NSW, 2000, pp. 4921-4925 vol.5, doi: 10.1109/CDC.2001.914711.

https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050

